ITCA 650 Significantly Reduces the Need to Advance Antidiabetes Therapy Compared to Sitagliptin

Julio Rosenstock, MD;¹ Prakash Prabhakar, PhD;² Lise Kjems, MD, PhD;² Holly Huang, PhD;² Michelle Baron, MD²

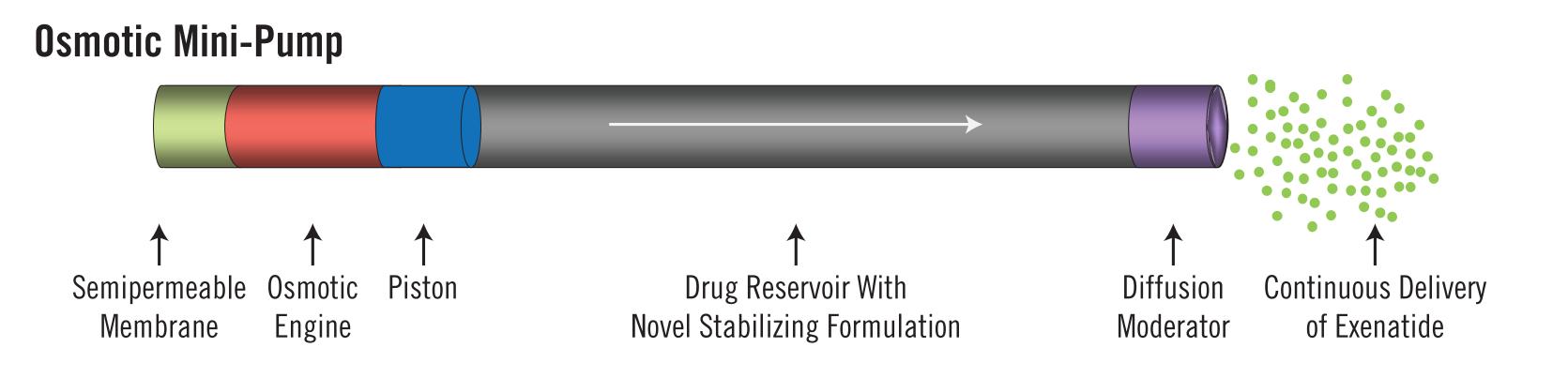
¹Dallas Diabetes Research Center at Medical City, Dallas, TX, USA; ²Intarcia Therapeutics, Inc., Boston, MA, USA

ABSTRACT

Background: The need to advance antidiabetes therapy is a valid indicator of the effectiveness and sustainability of an antidiabetes agent. ITCA 650 is an osmotic mini-pump in development for type 2 diabetes (T2D) that continuously delivers exenatide SC for up to 6 months after subdermal placement. ITCA 650 20 mcg/day for 13 weeks followed by a maintenance dose of 60 mcg/day every 6 months was tested vs sitagliptin 100 mg (SITA) in the FREEDOM-2 study. ITCA 650 demonstrated greater reductions in HbA1c (1.5 % vs 0.8%, *P*<0.001) and body weight (4 kg vs 1.3 kg, *P*<0.001).

Methods: This exploratory analysis from FREEDOM-2 assessed the need for further therapy in addition to ITCA 650 or SITA added to metformin in 530 uncontrolled T2D pts (mean baseline HbA1c 8.6%). Further therapy was protocol mandated based on predefined criteria that became more stringent over time including any HbA1c >8% after Week 26.

Results: More SITA pts advanced therapy compared to ITCA 650; the incidence increased significantly and progressively with SITA after Week 26. In contrast, most ITCA 650 treated pts achieved and maintained glycemic control. At 52 weeks, 85.2% of pts on ITCA 650 remained on two therapies (Met + ITCA 650) compared to 64.6% on SITA.

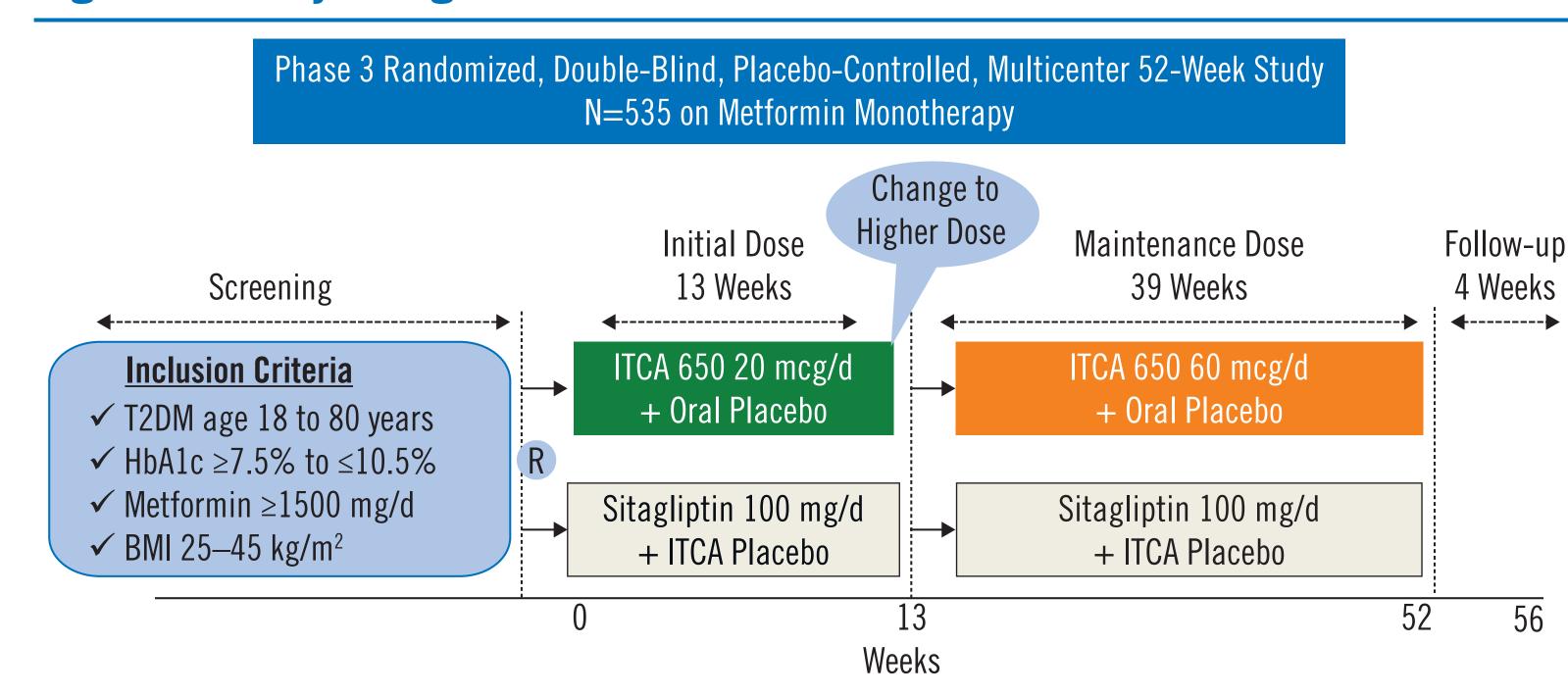

Summary: In conclusion, addition of ITCA 650 for 52 weeks led to better sustained glycemic control in uncontrolled T2D on metformin, significantly reducing the need for further therapy compared to addition of SITA.

INTRODUCTION

- Patients with type 2 diabetes frequently require advancement of therapy beyond initial metformin treatment to achieve treatment goals.
- Although numerous drugs are available for the individualized management of type 2 diabetes, poor treatment adherence, sub-optimal efficacy, inadequate weight control, and unacceptable tolerability remain barriers to optimal glycemic control.¹⁻³
- Despite its wide use, sitagliptin glucose-lowering effects are relatively modest, but most notably, persistent treatment effects are not achieved with sitagliptin as add-on to metformin as reported in clinical trials⁴ and observed in real-world setting.⁵
- GLP-1 receptor agonists are effective therapeutic agents for the treatment of T2D; the need to administer by injection may limit their use early in treatment.
- Adherence to treatment with antidiabetic drugs is generally low, and is reported to range from 38% to 54% with GLP-1 agonists.⁶
- In addition to the negative impact on achieving effective glycemic control, poor medication adherence results in increased healthcare costs. 1-2
- ITCA 650 is an investigational drug device combination product that consists of an osmotic mini-pump (**Figure 1**) that provides continuous subcutaneous (SC) delivery of exenatide for up to 6 months after its subdermal placement in the abdominal wall.
- Exenatide plasma levels are maintained as long as the ITCA 650 device is in situ, and no action is required on the part of patient.

- Placement and removal of ITCA 650 is performed by trained healthcare professionals in a brief office procedure. The sterile mini-pump is placed in the sub-dermis of the abdominal wall using a placement tool and is removed or replaced through a small (~5 mm) incision and closed with Steri-Strips.
- Phase 3 studies with ITCA 650 demonstrated significant improvement in change from baseline HbA1c, body weight, and HbA1c<7% compared with placebo or sitagliptin in patients with type 2 diabetes.^{7,8}

Figure 1. ITCA 650 Osmotic Mini-Pump



• ITCA 650 releases drug at a predetermined rate based on osmosis. Extracellular fluid enters through the semi-permeable membrane directly into the osmotic engine (salt gradient). The resulting pressure pushes the piston at a slow and consistent rate of travel that forces the drug formulation to be released through the orifice of the diffusion moderator.

OBJECTIVE

- To assess the need to advance antidiabetes therapy, a meaningful measure of the effectiveness and sustainability of antidiabetes therapy, in patients with type 2 diabetes treated with ITCA 650 vs. sitagliptin.⁸
- Analysis of data from FREEDOM-2 a randomized, double-blind, double-dummy study comparing ITCA 650 and sitagliptin (**Figure 2**).

Figure 2. Study Design for FREEDOM-2

METHODS

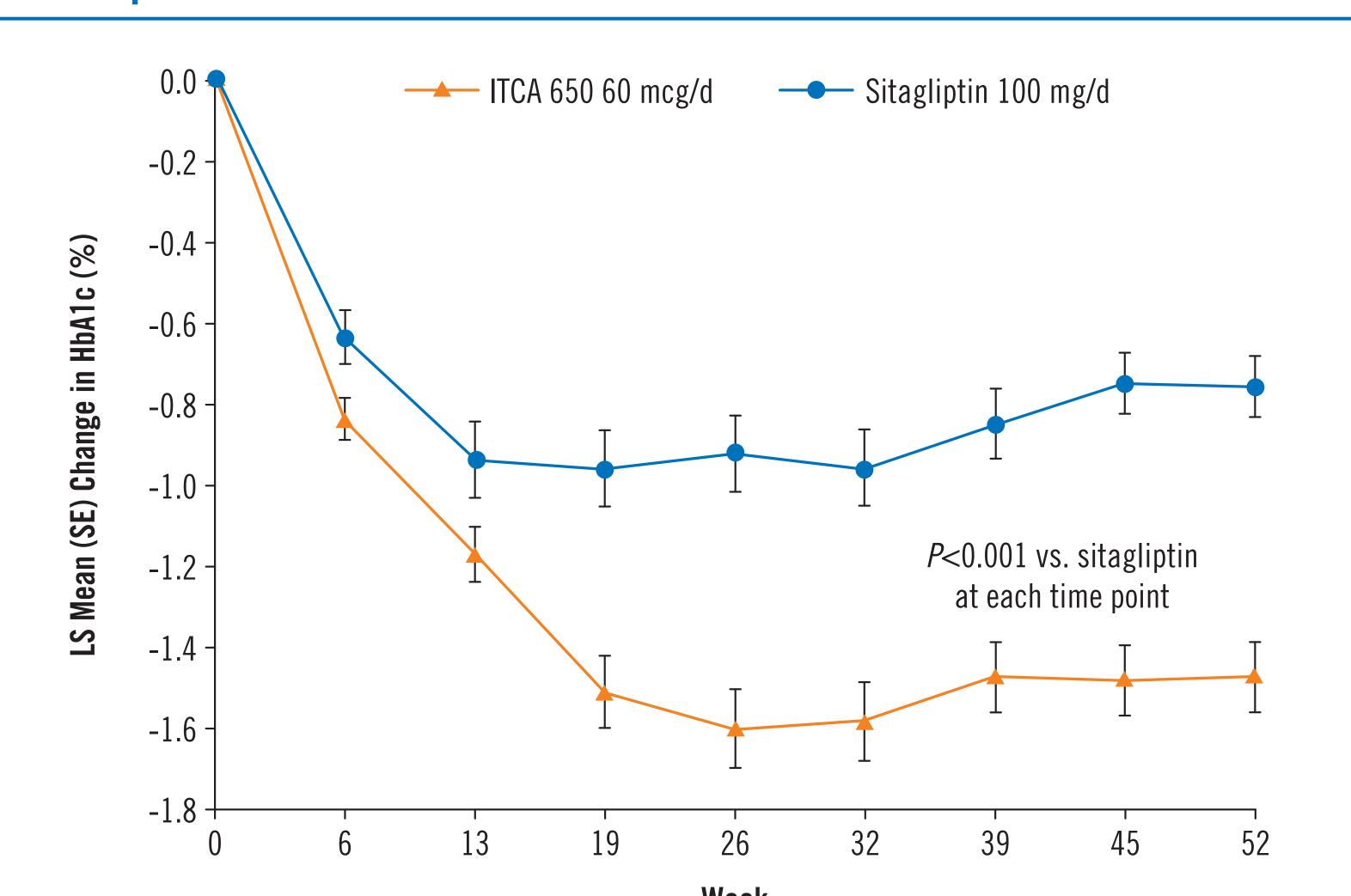
• Descriptive statistics on disposition, demographic and baseline characteristics of patients who need to advance antidiabetes therapy compared to the overall patient population are provided below.

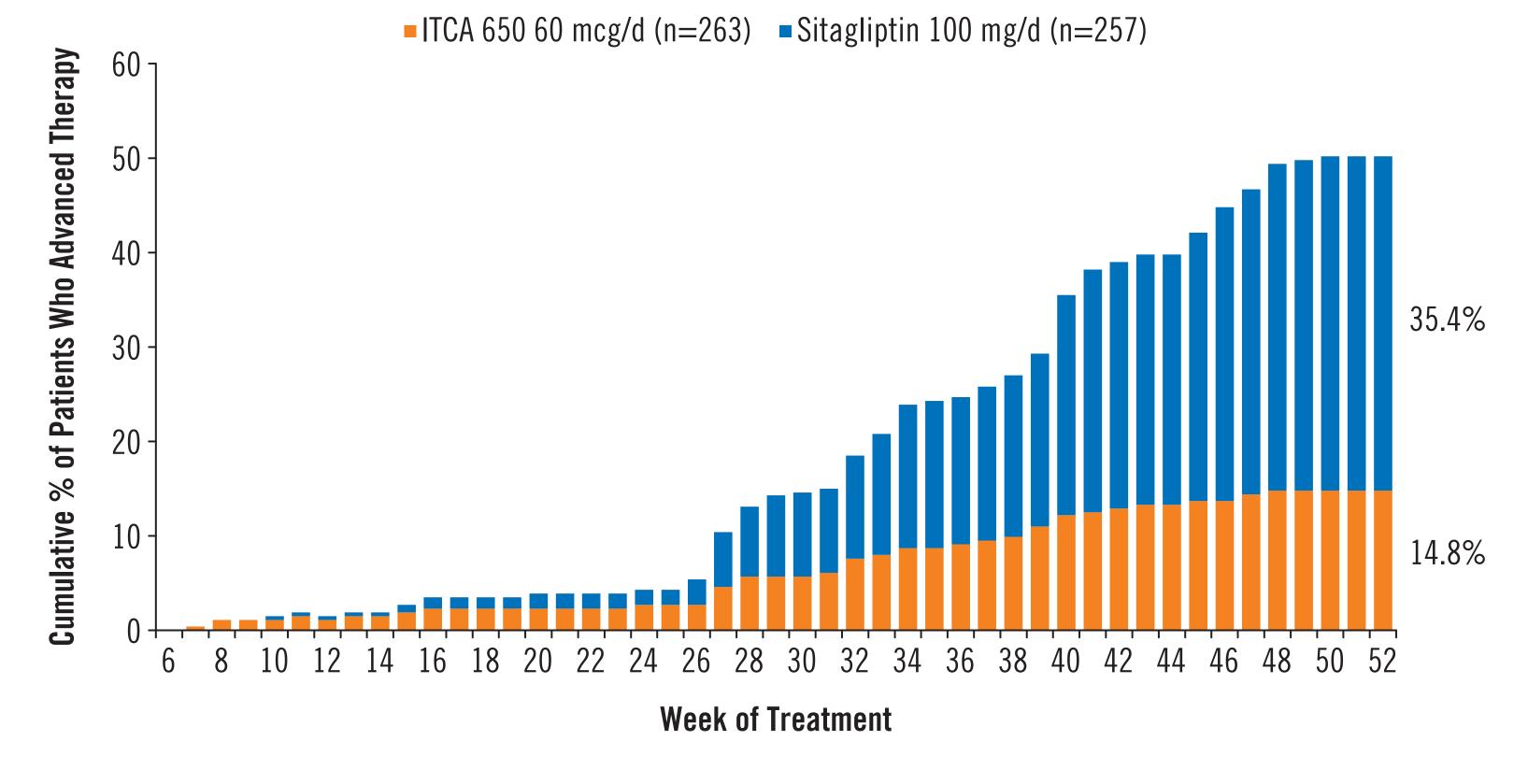
- Data from patients with type 2 diabetes, uncontrolled on metformin (n=263 on ITCA 650, n=257 on sitagliptin) were analyzed for the proportion of patients needing advancement of antidiabetes therapy.
- Rescue, requiring advancement of therapy, the addition of or increase of therapy from baseline, was protocol mandated based on predefined criteria.
- Day 0 to Week 13:
- Two or more fasting self-monitored blood glucose (SMBG) values >240 mg/dL during any
 7-day period
- Two consecutive FPG values >240 mg/dL
- After Week 13:
- Two or more fasting SMBG values >200 mg/dL during any 7-day period;
- Two consecutive FPG values >200 mg/dL
- An HbA1c elevation of $\geq 1.5\%$ at any timepoint in the study
- An HbA1c >8.0% after Week 26
- Data were analyzed for the modified intent-to-treat population (mITT), which included all patients who initiated study treatment (had a procedure started for placement of ITCA 650/ITCA placebo or took sitagliptin/sitagliptin placebo) and who had a valid baseline and at least 1 post baseline HbA1c value.

RESULTS

- FREEDOM-2 previously demonstrated significant improvement with ITCA 650 60 mcg/d vs. sitagliptin 100 mg/d in HbA1c, body weight, the composite endpoint of a reduction of >0.5% in HbA1c and weight loss ≥2 kg from baseline, and the proportion of patients achieving HbA1c <7%.
- LS mean change (SE) from baseline for HbA1c at Week 52 was -1.5% (0.08) with ITCA 650 vs. -0.8% (0.08) with sitagliptin (*P*<0.001 for ITCA 650 vs. sitagliptin) from a baselne of 8.5% and 8.7%, respectively (**Figure 3**).

Figure 3. LS Mean (SE) Change From Baseline to Week 52 for HbA1c (%) – mITT Population

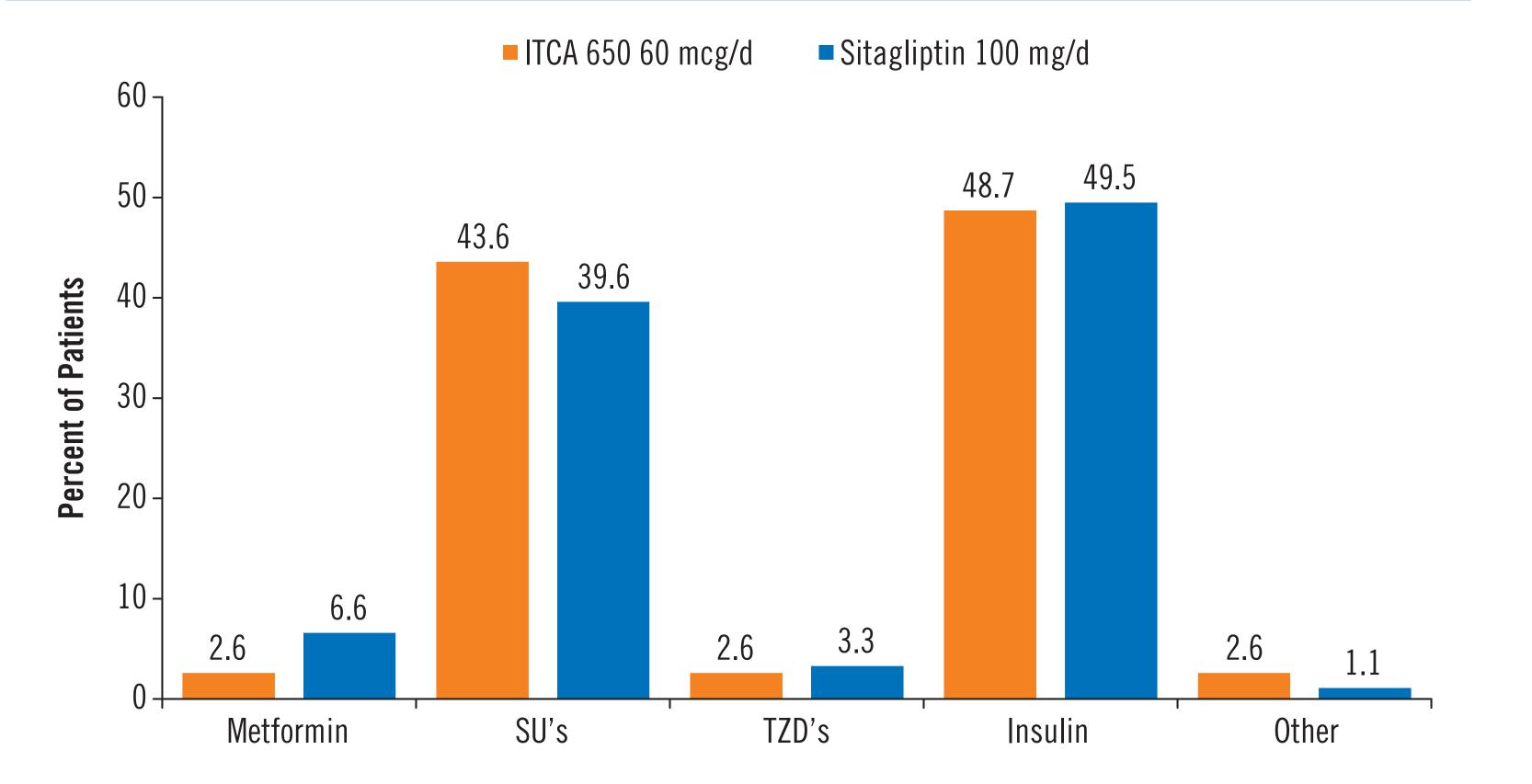



Table 1. Baseline Demographic and Clinical Characteristics for Population Requiring Advancement of Therapy vs. Overall Study – mITT Population

	Advanced Therapy Population		Overall Study (mITT Population)	
	ITCA 650 20/60 mcg/d	Sitagliptin 100 mg/d	ITCA 650 20/60 mcg/d	Sitagliptin 100 mg/d
Number	39	91	263	257
Age, years ^a	53.6 ± 9.6	54.7 ± 10.0	55.4 ± 9.8	54.6 ± 10.3
Male, (%)	53.9%	51.7%	54.4%	59.5%
Hispanic or Latino, (%)	48.7%	50.6%	42.6%	42.0%
Race, (%)				
White	82.1%	78.0%	76.0%	76.7%
Black/African American	10.3%	14.3%	11.4%	12.5%
Other	7.6%	7.7%	12.6%	10.8%
Body weight, kg ^a	93.7 ± 20.4	91.2 ± 20.0	92.2 ± 19.9	92.0 ± 21.4
BMI, kg/m ^{2 a}	33.1 ± 6.0	32.7 ± 5.7	32.8 ± 5.6	32.4 ± 5.6
HbA1c (%) ^a	9.1 ± 1.0	8.9 ± 0.9	8.5 ± 0.9	8.7 ± 0.9
Time since diabetes diagnosis (years) ^a	9.0 ± 5.5	8.2 ± 5.4	8.8 ± 6.1	7.8 ± 5.4
Metformin dose at baseline (mg/day) ^a	2009 (258)	2004 (287)	2033 (261)	2014 (284)

Table 2. HbA1c and Body Weight Prior to Advancement of Therapy

	Mean (standard error)		
	ITCA 650 60 mcg/d N=39	Sitagliptin 100 mg/d N=91	
HbA1c, %	8.7 ± 0.14	8.8 ± 0.09	
Mean change HbA1c, %	-0.37 ± 0.21	-0.08 0.11	
Body weight, kg	91.6 ± 3.4	89.7 ± 2.1	
Mean change Body Weight, kg	-2.1 ± 0.6	-1.5 ± 0.4	


Figure 4. Percent of Patients Who Advanced Therapy by Week of Treatment (mITT Population)

- At baseline, demographic and clinical characteristics of patients who required AT were comparable to the overall study population (Table 1).
- At Week 52, 15% of the ITCA 650 group and 35% of the sitagliptin group required rescue necessitating advancement of therapy (**Figure 4**).
- An increase in the incidence of patients who advanced therapy was seen in both groups at Week 26 as the criteria became more stringent.
- Most (85%) ITCA 650 treated patients remained on assigned therapy at Week 52. (**Figure 4**).
- In contrast, a progressive increase in the need to advance therapy was observed in the sitagliptin group after Week 26 (**Figure 4**).

• Drugs most often used to advance therapy were insulin and sulfonylureas (mITT Population) (Figure 5).

Figure 5. Medications Used to Advance Therapy (mITT Population)

SUMMARY

- In this global study of patients who were poorly controlled on optimal doses of metformin, greater efficacy (HbA1c, weight, and goal attainment) was achieved with ITCA 650 compared to sitagliptin.
- Nearly 35% of patients on treatment with sitagliptin + metformin needed to advance therapy compared with 15% of patients treated with ITCA 650 + metformin.
 The need to advance therapy with sitagliptin was incremental and progressive over time.
- The need to advance therapy with sitagliptin was incremental and progressive over time compared to ITCA 650.
- By Week 52, nearly 85% of better controlled patients in the ITCA 650 group remained on metformin alone compared to nearly 65% of patients in the sitagliptin group.
- This is consistent with sustained efficacy over time of ITCA 650 compared to sitagliptin.

CUNCLUSIUN

• In this prespecified analysis of a randomized, controlled study in inadequately controlled type 2 diabetes patients on maximal or near maximal doses of metformin, add-on therapy with ITCA 650 resulted in significantly improved and sustained glycemic control without the need to further advance therapy in most patients.

REFERENCES

Breitscheidel L, Stamenitis S, Dippel FW, Schöffski O. Economic impact of compliance to treatment with antidiabetes medication in type 2 diabetes mellitus: a review paper. J Med Econ. 2010;13:8-15.
 Egede LE, Gebregziabher M, Dismuke CE, et al. Medication nonadherence in diabetes: longitudinal effects on costs and potential cost savings from improvement. Diabetes Care. 2012;35:2533-2539.
 Stark Casagrande R, Fradkin JE, Saydah SH, et al. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care. 2013;36:2271-2279.

4. Ahrén B, Masmiquel L, Kumar H, Sargin M, Karsbøl JD, Jacobsen SH, Chow F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol. 2017;5(5):341-354.

GLP-1 receptor agonists: higher adherence and persistence with dulaglutide compared to exenatide QW and liraglutide. *Diabetes Obes Metab.* 2017 Feb 9. doi:

Lefebvre P, Pilon D, Robitaille M-N, Lafeuille M-H, Chow W, Pfeifer M, Duh MS. Real-world glycemic, blood pressure, and weight control in patients with type 2 diabetes mellitus treated with canagliflozin—an electronic health record-based study. *Curr Med Res Opin*. DOI: 10.1080/03007995.2016.1183604.
 Alatorre C, Fernández Landó L, Yu M, Brown K, Montejano L, Juneau P, Mody R, Swindle R. Treatment patterns in patients with type 2 diabetes mellitus treated with

10.1111/dom.12902. [Epub ahead of print].

7. Baron M, Buse JB, Azeem R, Kjems L, Rosenstock. A randomized, double-blind, placebo-controlled, 39 week trial of ITCA 650 as add-on therapy in type 2 diabetes. Abstract presented at the European Association for the

trial of ITCA 650 as add-on therapy in type 2 diabetes. Abstract presented at the European Association for the Study of Diabetes Annual Meeting, September 2015.

8 Rosenstock L Denham D. Prabhakar P. Azeem R. Kiems L. Baron M. Efficacy of ITCA 650 vs. sitaglitpin in

uncontrolled type 2 diabetes on metformin: the FREEDOM-2 randomized, double-blind 52-week study. American Diabetes Association Scientific Sessions. New Orleans, LA, June 10-14, 2016.

Presented at the American Diabetes Association

77th Scientific Sessions, San Diego, CA, June 9-13, 2017.

